Monodromy Eigenvalues Are Induced by Poles of Zeta Functions – the Irreducible Curve Case

نویسنده

  • WILLEM VEYS
چکیده

The ‘monodromy conjecture’ for a hypersurface singularity f predicts that a pole of its topological (or related) zeta function induces one of its monodromy eigenvalues. However, in general only a few eigenvalues are obtained this way. The second author proposed to consider zeta functions associated with the hypersurface and with a differential form and raised the following question. Can one find a list of differential forms ωi such that any pole of the zeta function of f and an ωi induces a monodromy eigenvalue of f , and such that all monodromy eigenvalues of f are obtained this way? Here we provide an affirmative answer for an arbitrary irreducible curve singularity f .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monodromy Eigenvalues and Zeta Functions with Differential Forms

For a complex polynomial or analytic function f , there is a strong correspondence between poles of the so-called local zeta functions or complex powers ∫ |f |2sω, where the ω are C∞ differential forms with compact support, and eigenvalues of the local monodromy of f . In particular Barlet showed that each monodromy eigenvalue of f is of the form exp(2π −1s0), where s0 is such a pole. We prove ...

متن کامل

Quasi-ordinary Power Series and Their Zeta Functions

The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function ZDL(h, T ) of a quasi-ordinary power series h of arbitrary dimension over an algebraically closed field of characteristic zero from its...

متن کامل

Motivic Serre Invariants, Ramification, and the Analytic Milnor Fiber

where s is a complex variable, f is a polynomial over Zp in n variables, |f | is its p-adic norm, and |dx| denotes the Haar measure on the compact group Zp , normalized to give Zp measure 1. A priori, Zp(f, s) is only defined when R(s) > 0. However, Igusa proved, using resolution of singularities, that it has a meromorphic continuation to the complex plane. Moreover, it is a rational function i...

متن کامل

Poincaré series and zeta function for an irreducible plane curve singularity

The Poincaré series of an irreducible plane curve singularity equals the ζ-function of its monodromy, by a result of Campillo, Delgado and GuseinZade. We derive this fact from a formula of Ebeling and Gusein-Zade relating the Poincaré series of a quasi-homogeneous complete intersection singularity to the Saito dual of a product of ζ-functions. Several cases are known where the ζ-function of the...

متن کامل

An Introduction to P -adic and Motivic Zeta Functions and the Monodromy Conjecture

Introduced by Weil, the p-adic zeta function associated to a polynomial f over Zp was systematically studied by Igusa in the non-archimedean wing of his theory of local zeta functions, which also includes archimedean (real and complex) zeta functions [18][19]. The p-adic zeta function is a meromorphic function on the complex plane, and contains information about the number of solutions of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008